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ABSTRACT

After insertion into the near-earth parking orbit a Go, No-Go decision has
to be made, based on one minute of ship's tracking data. The deciding factor
for the Go, No-Go decision is the perigee height of the parking orbit; a mini-
mum perigee height of 75 n.mi. is required. In this paper, a statistical analysis
has been made of the error in the perigee height, as determined from one min-
ute of ship's tracking data. It is shown, that the computed perigee height has to
be 0.5 to 17 n.mi. higher than 75 n.mi. in order to insure that the actual perigee
height exceeds 75 n.mi. with 99.5% probability. The use of a 17.n.mi. padding
is recommended in order to cover worst case conditions.
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SUMMARY

At insertion, the following parameters:

radius T,

speed v

[o]

flight path angle 7

will be determined from one minute of a ship's tracking data. In reference 2, it
is required that these parameters be determined to the following accuracies:

30, = 2.4n.mi. (4.44 km)
3Uvo = 16 ft/sec (4.87 m/sec)
3(7,),0 = 0.16° (2.79 mrad)

A statistical analysis of the perigee height error due to the above insertion
parameter uncertainties is presented in this paper. Gaussian distributions are
assumed for the errors in the insertion parameters (i.e., measured minus actual)
and correlations between the errors are taken into account. The results are ap-
plied to the Apollo Go, No~Go decision at insertion.

For a Go decision, an actual perigee height of 75 n.mi. is required with
99.5% probability (reference 1). It is shown that the computed perigee height
(from ship's tracking data) has to be 0.5 to 17 n.mi. higher than 75 n.mi. in
order to meet this requirement. The required padding is a function of the ec-
centricity e of the parking orbit, the true anomaly & at insertion, the errors in
the insertion parameters and their correlations.

The results of the analysis may be summed up in the following recommen-
dations:

1. A padding of 17 n.mi. should be used to insure with a 99.5% probability
that a Go decision is correct. This value covers the following cases:

a. All eccentricities in the region 0 < e < 0,01.
b. All values of true anomaly at insertion.

c¢. All values of correlation coefficients o between errors of the in-
sertion parameters in the region 0 < | p| < 0.9,

2. The parking orbit should have the smallest possible eccentricity and a
true anomaly close to 0° at insertion in order to minimize the perigee
height error.
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THE EFFECT OF INSERTION SHIP
TRACKING ERRORS ON THE APOLLO
GO, NO-GO DECISION

1. INTRODUCTION

For the Apollo mission a decision to continue or not continue, i.e., the Go,
No-Go decision, will have to be made shortly after the spacecraft is inserted
into the parking orbit.

Three sources of data are available for the Go, No-Go decision: the inser-
tion ship and two on board inertial guidance systems. One of the on board sys-
tems is located in the S~-IVB and the other in the Apollo spacecraft (Command
Module). Normally, the Go, No~Go decision will be made using the two on board
systems. In the event these two systems are in disagreement, the insertion
ship will be used as an arbiter (reference 1).

This report is a statistical analysis of the effect of tracking measurement
errors by the insertion ship on the error in perigee for near-earth Apollo
parking orbits. The results of this analysis are applied to the Apollo Go, No-Go
decision at insertion.

Figure 1 shows the geometry at insertion. The critical insertion parameters
are the radius r_, the magnitude of the velocity v _, and the flight path angle v .

As required in reference 2, these insertion parameters must be determined
from the ship's tracking data with the following accuracies:

30, = 2.4nmi (4.4 knm)
3o, = 16 ft/sec (4.87 m/sec)
30, = 0.16° (2.79 mrad)

It is shown in reference 3, Chapter 3, that these accuracy requirements
can be met with one minute of tracking by the ship if the tracking error model
from reference 4 is used. Three minutes of tracking is obtainable with the
positions of the insertion ship as planned in reference 3. Thus, since only one
minute of tracking data is needed, this provides a margin for loss of data due
to delayed acquisition, interrupted tracking, etc.

The Go, No-Go decision will be based upon the perigee height. In reference
2 a minimum perigee height of 71 n.mi. (131 km) is required. In order to allow
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Figure 1. Insertion Geometry.

for two orbits before re-entry, a minimum perigee height of 75 n.mi. (139 km)
is suggested in reference 1, and a 99.5% probability is required to achieve this
minimum height if a Go decision is made (reference 1).

The perigee height may be calculated from the insertion parameters by
means of the Keplerian two-body equations of motion. However, due to errors
in the insertion parameters as determined from the ship's tracking data, there
will be an error associated with the calculated perigee height. It is the purpose
of this report to study the probability distribution of perigee error and apply the
results to the Apollo Go, No-Go decision at insertion.

Distribution determination of the perigee error is important from the stand-
point of astronaut safety. If the actual perigee height is lower than the calculated
perigee height, an incorrect Go decision could be made (i.e., one where the
actual perigee height is lower than 75 n.mi.). This would be detrimental to the
safety of the astronauts due to the excessive re-entry heat.




As stated in reference 3, a circular parking orbit is planned. However, an
elliptical orbit should not be ruled out, in which case the perigee height may be

at 85 n.mi. (157 km) and the apogee height at 150 n.mi. (278 km)., Both circular
and elliptical parking orbits are therefore treated in this analysis.

2. THE CUMULATIVE DISTRIBUTION OF PERIGEE ERROR

2.1 The Perigee Error

The spacecraft has the actual or true insertion parameters r, v,and y.
The actual perigee radius r, can be determined from the Keplerian two-body
equations of motion.

2 = _2_ - _1_ 2.1.1
v, 1 r T a (2.1.1)
(1-e?) = — (v2r2cos? vy, ) (2.1.2)
pa o "o ’yo e
r, T a (1 -¢e) (2.1.3)
where a = semi-major axis of the parking orbit
e = eccentricity of the parking orbit
p = gravitational constant of the earth (398603.2 (km)3/sec 2)

by eliminating a and e as shown in Appendix A. Thus, the perigee radius r,
is a function of TV, and Ve

Since the insertion parameters are determined from the ship's tracking
data, they will be inerror by the amounts Ar Avo, and Ayo. Therefore, the
calculated perigee radius Foeat will deviate by Arp from the actual perigee
radius T

Ar = r -, T or, (r, *&r_, v, +8v,, v, t4y) - r, (1, v, 7o)

(2.1.4)

This equation determines Arp as a function of the insertion parameters and
their errors. By eliminating s Vs and Y, with the aid of equations (2.1.1)
through (2.1.3), an alternate express1on for Ar results (equations B.63, B.64,
and B.68 of Appendix B).

Ar_ = Arp (a, e, 0, Or, Bv_, Dy) (2.1.5)

P




The advantage of using equation (2.1.5) is that Arp is almost independent of
the semi-major axis a. In the range of a-values of interest, we may write

Arp = Arp (e, 6, Aro, Avo, A”yo) (2.1.6)

In this form Ar, depends only upon two parameters, the eccentricity e of
the actual orbit and the true anomaly & at insertion. This greatly simplifies
the statistical analysis of Arp.

2.2 Use of the Cumulative Distribution Function F

An example of a cumulative distribution function
F (Arp) = P (ARp < Arp)

where ARP = the random variable and A r, =a particular value of AR, is shown
in Figure 2a. (For derivation of the distribution function see Chapter 2.3.) The
use of this function can be demonstrated best by an example.

Assume that the calculated perigee height (rp_,, - r.) is 79 n.mi. (146 km).
The allowed minimum perigee height (r, o ) 1s 75 n.mi. (139 km), and it
appears that a Go decision could be made However the condition for making a
correct Go decision is

r, T, > 75 n.mi. (2.2.1)

Using (2.1.4) and substituting ARp for Ar_(since we wish to make a state-
ment of probability we will use the random variable ARP) we can write

(rpcal - re) - ARP Z (rpmin - re)
Therefore,
79 n.mi. - ARp > 75 n.mi.
or
ARp <€ 4 nmi. (7.4 km) . (2.2.2)

From the cumulative distribution function in Figure 2b, we see that the
probability for satisfying (2.2.2), i.e., making a correct Go decision, is:

P(AR < 4nmi.) = F = 93%. (2.2.3)
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Figure 2a. Cumulative Distribution
Function F of the Perigee Error

AR .F = =
o F = F(r) = PR < Ar).

Figure 2b. With a Padding of
4 Nautical Miles, the Probability
for a Correct GO Decision is

93%.

Figure 2c. A Padding of 7.4
Nautical Miles |Is Required for

a 99.5% Probability of a Correct
GO Decision.



Using the same function (see Figure 2c), for a 99.5% probability, the calcu-
lated perigee height (r, L r.) has to be

(r

peas r.)) - 78 nmi. > 7.4 n.mi.

or

(r - r,) > 82.4n.mi. (2.2.4)

Pcal

In other words, a padding of 7.4 n.mi. (13.7 km) is required to insure with a
99.5% probability that the true or actual perigee height exceeds 75 n.mi. (139 km).

The cumulative distribution function F used in the above example is valid
for e = 0.001, 8 = 180°, and no correlation between the random variables AR_»
AV, and AT (1), The required padding for other insertion parameters and
different correlations between AR_, AV , and A" is analyzed in Chapter 3.

2.3 Computation of the Cumulative Distribution Function F.

Normally, the first step in an error analysis is to develop a variational
equation expressing Arp as a function of Ar , Av , and Ay, . This is done in
Appendix B (Equation B.79), and it is shown that the variational equation is a
second order equation in A T, of the form:

+ + 2
alArp azAroArp a3AvoArp toa, (Arp)

,BlAro + BzAvo + ,83 Ayo + ,84AroAvo + ,Bs Avo Ayo

(2.3.1)
+ BGAro A’)/o + 57 (Aro)2 + /88 <Avo)2 * ’89 (A’yo)2

+ terms of higher order

where the coefficients « (i =1,2,3,4)and 5, (i = 1,2, ..., 9) are functions of
the insertion parameters r_, v, and Vo

(1) . . -
Here ARO, AVO and Aro are random variables representing the errors in insertion radius,

velocity magnitude, and flight path angle, to be distinguished from Aro, Avo, and A’yo which
are values which ARO, AVO, and Aro can assume.



Equation (2.3.1) has  simple solutions for two special cases. For a cir-
cular orbit, the coefficients of the linear terms vanish and the resuit is Equation
(B.82) of Appendix B:

2
ro ro
Arp = 2'[AI’° + <.V_°-> Avojl —/I:Aro t 2 <—V_> AVO} * (ro A70)2' (B.82)

For large e-values the second order terms may be neglected, and the re-
sult is a simple linear expression in Ar_, Av_, and Ay, . In particular, if
0.005 < e < 0.05, equation (9) from reference 5 is valid

r
Arp ~ (2 - cos (9)Ar0 + 2(1 - cos &) (*) AVO = (r, sin &) AVO- (2.3.2)

\%
o

The range of e-values of interest in this reportis 0 < e < 0.01. Inthe
region0 < e < 0.005, the variational equation (2.3.1) confuses rather than aids
the analysis. Therefore, the basic definition, equation (2.1.4), has been used.

Ar13 B rp (ro * Aro’ Vo * Avo’ ryo + A,)/o) - rp (ro’ Voo '}’o) ) (2'1'4)

It should be noted that this latter expression is exact. The value of equations
(B.82) and (2.3.2) lies in their simplicity. Consequently, in their region of valid-
ity, they have been used as a check against the numerical computations performed
using (2.1.4).

If ARO, AVO, and AFO are assumed to be normally distributed random vari~
ables, then the cumulative distribution function of perigee error(?’

ARP = or (rg AR, vt AV, y o+ A ro (T, Vo, 7o) (2.3.3)

can be written in integral form. However, this integral cannot be expressed in
terms of known or tabulated functions, but must be evaluated by numercial tech-
niques — either a Monte Carlo approach or numerical integration. The latter
approach has been used in this analysis, and is described in Appendix B.

If the error in perigee is expressed in terms of the orbital elements

AR, = AR (a, e, 6, 8RR, AV, AT ) (2.3.4)

(2)Again, since we are dealing with probability distributions we will use random variable

notations.
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we see in Figure 3 that ARP is almost independent of the semi-major axis a for
a-values of interest in the Go, No-Go analysis. Figure 3 shows the cumulative
distribution functions for ARP for the following values of a:

3490 n.mi., 3544 n.mi., and 3598 n.mi.
(6463 km, 6563 km, 6663 km)

Although a varies + 54 n.mi. (+100 km), or approximately six times the
expected variation in a for this analysis, the cumulative distribution functions
vary insignificantly. We may therefore neglect the variation in a, and use an
average value of 3544 n.mi. (6563 km). This will greatly simplify the analysis.
Hence,

AR, = OR (e, 6, AR, AV, AT ). (2.3.5)

A computed probability density function of perigee error, f(Ar ) for an
actual circular parking orbit (e = 0) for both correlated and uncorrelated inser-
tion errors AR , AV, and A’ is shown in Figure 4a. The computed cumulative
distribution function
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Ar,
F = F(br) = Jf(x) dx (2.3.6)

-0

is shown for the same conditions in Figure 4b. It is of interest to note that the
perigee error does not have a mean of zero and is not normally distributed.

Figures 5 through 8 show cumulative distribution functions for eccentrici-
ties of e = 0.0005, e =0.001,e = 0.005, and e = 0.01. In each instance there are
curves for both correlated and uncorrelated insertion errors. For uncorrelated
errors, curves are plotted for true anomalies at insertion of ¢ = 0°, 90°, and
180°. The F-curves are even functions of & for uncorrelated errors and hence
are also valid for ¢ = -90°. For correlated errors, the curves are no longer
even functions of ¢, and have therefore been plotted for 8 = 0° and 6 = 180° *45°.,
In all of these figures, the "3 sigma' limits for the insertion errors have been
taken as

3UAro = 2.4 n.mi. (4.4 km)

16 ft/sec (4.87 m/sec)

I

0.16° (2.79 m rad).

2.4 Verification of the Numerical Integration

It has already been mentioned that in its region of validity equation (2.3.2)
is a very good approximation for the perigee error. This can be seen in Figures
9a and 9b where the cumulative normal distribution function using (2.3.2) is
compared with the cumulative distribution function of perigee error obtained
by numerical integration. In both figures, the semi-major axis was taken to be
3544 n.mi. (6563 km) and the eccentricity of the parking orbit e = 0.01. In Fig-
ure 9a, 4 = 225° and the coefficients of correlation of the errors at insertion
AR, AV, and AD'_ are all equal to 0.75. It can be seen that the agreement be-
tween the two methods is very good. In Figure 9b, 9 = 180°, and the errors
are uncorrelated. Again the agreement between the two methods is very good.

In Appendix B, Figures 19 and 20, the required padding for 99.5% probabil-

ity is compared using both numerical integration and equation (2.3.2). Again,
there is good agreement.

10
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3. THE GO, NO-GO DECISION

An incorrect Go decision (one where the true or actual perigee height is less
than 75 n.mi.) could endanger the lives of the astronauts. Therefore, a 99.5%
probability is required for a correct Go decision (reference 1). Since there will
always be an error Ar  in the calculation of the perigee height, a padding must
be added to the minimum required perigee height of 75 n.mi. (139 km) in order
to have a 99.5% probability that the actual perigee height exceeds 75 n.mi. The
required padding must be equal to or greater than that value of Ar  for which
F(Ar) = 0.995. Hence, it can be read off the cumulative distribution curves in
Chapter 2 at the point where F = 0.995,

In this chapter, the required padding is analyzed and is seen to depend sig-
nificantly on the eccentricity e, the true anomaly at insertion ¢, and the corre-
lation coefficients between the insertion errors. As discussed in paragraph 2.1,
the required padding depends insignificantly on the semi-major axis a. Since it
is practically impossible to determine the actual coefficients of correlation
between the insertion errors, the calculations have been carried out for coeffi-
cients of correlation of 0, +0.75, and +0.9. That is, all possible combinations of
signs have been considered with the exception of those for which the covariance
matrix becomes singular. Throughout the analysis, it has been assumed that the
insertion errors AR _, AV, and A" are normally distributed random variables
having means of zero and "3 sigma'’ values of:

3op, = 2.4 n.mi. (4.44 km)

3O'AV° 16 ft/sec (4.87 m/sec)

il

3UA70 0.16° (2.79 m rad)

Table 1 shows the maximum required padding for eccentricities from 0
through 0.01. Also shown are the associated true anomalies at insertion and the
coefficients of correlation for the insertion errors.

Figures 10 through 14 show the required padding for a 99.5% probability of
a correct Go decision. The figures are for eccentricities of 0, 0.0005, 0.001,
0.005, and 0.01, and the curves are plotted versus true anomaly at insertion 6.
In each figure there are two sets of curves — those for correlation coefficients
of 0.75 and those for correlation coefficients of 0.9.

It is of interest to note that for eccentricities in the range e < 0.001, the
maximum required padding occurs when the insertion errors are uncorrelated.

16



Table 1

Maximum Required Padding for a 99.5%
Probability for a Correct Go-Decision

Max. Required | True anomaly Coefficients of Correlation
Eccentricity Padding at insertion
- PAr Av_ | PAv Ay, | PAr Ay
(n.mi.)| (km) (degrees) ° °e e
0 1.6 2.9 All values 0 0 0
0.0005 4.8 8.9 180 0 0 0
0.001 7.5 | 13.8 180 0 0 0
135 +0.9 -0.9 -0.9
0.005 17.1 31.7
225 +0.9 +0.9 +0.9
135 +0.9 -0.9 -0.9
0.01 17.2 | 31.8
225 +0.9 +0.9 +0.9

For eccentricities in the range e > 0,005, high correlation gives the worst case.
The maximum required padding does not increase substantially if e is increased
above 0.005. This result obtained from numerical integration also agrees with
equation (2.3.2) which is valid in the region 0.005 < e < 0,05, and is independent
of e,

4. CONCLUSIONS

4,1 The Optimum Orbit

From the standpoint of the Go, No-Go decision, a circular parking orbit is
most desirable for two reasons:

1. For a given insertion energy, the perigee height is the greatest, giving

the largest margin between the actual perigee height and the required
minimum,
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2. As shown in Chapter 3, the perigee error is smallest.

Since the circular orbit cannot be achieved in actual flight, the optimum or-
bit is therefore one which has the smallest eccentricity. In addition, as shown in
Chapters 2 and 3, insertion at a true anomaly of & = 0° is desirable in order to
minimize the error in perigee Ar .

4.2 The Required Padding

In Chapter 3 it was shown that the required padding depends significantly on
the eccentricity e of the parking orbit, increasing with e in the region 0 < e <
0.005, and remaining nearly constant in the region 0.005 < e < 0,01 (Figures 10
through 14). In order to use the smaller required padding corresponding to
smaller e-values, the insertion ship must have the capability of determining the
eccentricity of the orbit with sufficient accuracy. This can be clarified with an
example.

The maximum required padding for an eccentricity of e = 0.001 is 7.5 n.mi.
(14 km) according to Figures 12a and 12b in Chapter 3. In order to use this
value, however, the ship must be able to verify that e < 0.001 for the actual or-
bit. The calculated eccentricity e__, is a function of the measurement errors.
Figures 15a and 15b show the cumulative distribution function H (Ae) of the error
in eccentricity AE for orbits with

e = 0.001
3aro = 2.4 n.mi. (4.44 km)
30, = 16 ft/sec (4.87 m/sec)
30'7, = 0.16° (2.79 mrad)

For the derivation and calculation of H(Ae) see Appendix C.

It is seen from these curves that the insertion ship cannot verify that
e < 0.001. Therefore, the small padding of 7.5 n.mi. (14 km) cannot be used.

The cumulative distribution function H(2€) for an actual orbit with e = 0.005
is shown in Figures 16a and 16b. It is evident from these figures that even an
eccentricity as large as e = 0.005 cannot be determined accurately enough by
the tracking ship. Therefore, the smaller required padding corresponding to
the lower e-values cannot be used.
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As previously mentioned, the required padding does not increase significantly
for e > 0,005, It is therefore recommended that the maximum padding of 17 n.mi.
(32 km) for e > 0.005 be used as a required padding. This value insures with a
99.5% probability that the actual perigee height exceeds the required minimum
perigee height for the following cases:

1. All eccentricities in the region 0 < e < 0.01.
2. All values of true anomaly at insertion.
3. All values of correlation coefficients o between the insertion errors in

the region 0 < |p| < 0.9.

4.3 Recommendations

The results of this analysis may be briefly stated in the form of the follow-
ing recommendations:

1. A padding (calculated perigee height > required minimum perigee
height + padding) of 17 n.mi. (32 km) should be used in order to insure
with a 99.5% probability that a positive Go decision is correct.

2. The near-earth Apollo parking orbit should have the smallest possible
eccentricity in order to achieve the largest possible margin between
the actual perigee height and the required minimum perigee height.

3. Insertion of the Apollo spacecraft should occur at a true anomaly as
close as possible to ¢ = 0° in order to minimize the perigee height
error.
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GLOSSARY AND DEFINITION OF SYMBOLS

Random vector. Let V,, V,, ..., V, be p random variables. Then the (px1)
vector V,

is a random vector.

Multivariate Normal Distribution. Let the p-dimensional random vector V have
the probability density function

1 -B -
Q] ™% (27) 2 e H (V=T 71 (V-m)

where 7 is the vector of constants

and Q is a (p x p) positive definite matrix. Then V has a nonsingular multi-
variate normal distribution with mean vector €(V) = m and covariance matrix

elv-amv- 7] =a.

Uncorrelated The random variables V, and V, are said to be uncorre-
lated if the coefficient of correlation o v between them is
Zero.

Error The measured or calculated value of a quantity minus its

actual or true value

a Semi-major axis of the parking orbit
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ij

ij

cal-

th th

Element in the i*" row and j*" column of the orthogonal
matrix B relaiing the normal vector Y (components are
uncorrelated) to the normal vector X (components are

correlated) such that Y = BX

The (3 x 3) diagonal matrix relating the normal vector W to
the normal vector X such that W = AX. The matrix A has
the diagonal elements oy, op, , and TAy, *

The (3 x 3) orthogonal matrix relating the normal vector
Y (components are uncorrelated) to the normal vector X
(components are correlated) such that Y = BX. The matrix
B is also the transpose of the matrix C.

Element in the i*? row and jtP column of the (3 x 3) ortho-
gonal matrix C relating the normal vector Y (components
are uncorrelated) to the normal vector X (components are
correlated) such that X = CY. The matrix C is also the
transpose of the matrix B.

The (3 x 3) orthogonal matrix relating the normal vector
Y (components are uncorrelated) to the normal vector X
(components are correlated) such that X = CY. The matrix
C is also the transpose of the matrix B.

An orthogonal matrix (3 x 3) which diagonalizes the corre-
lation matrix P, i.e., CITPIC1 is a diagonal matrix.

An orthogonal (3 x 3) matrix which diagonalizes the corre-
lation matrix P,, i.e., CZTP2C2 is a diagonal matrix.

An orthogonal (3 x 3) matrix which diagonalizes the corre-
lation matrix P,, i.e., C,JP,C, is a diagonal matrix.

A (3 x 3) diagonal matrix having A , \,, and A, as diagonal
elements. D = ETPE where E is an orthogonal matrix and
P is the covariance matrix of X (correlated components).

A calculated value of eccentricity.

ecal = e(ro * Aro’ vo + Avo’ 70 + Afyo)

The actual or true value of eccentricity.

29



€(Xy)

£,y

£,(y,)

fi(y3)

f(yy ¥or ¥3)

F,(Ar,)

g(x)

g(Xyy Xy, X3)

G(x)

H(Ae)

J(xqs %50 x3)

The expected value of the random variable X,. € is the
expectation operator.

A (3 x 3) orthogonal matrix which diagonalizes the corre-
lation matrix P, i.e., D = ETPE is a diagonal matrix having
Ays Nps @nd A, as diagonal elements.

Probability density function of the normally distributed
random variable Y.

Probability density function of the normally distributed
random variable Y, .

Probability density function of the normally distributed ran-
dom variable Y;.

Joint probability density function of Y, Y,, and Y, where
Y,Y,, and Y 3 are independent normal random variables.

f(yl, Yoo Y3) = fl(yl) fg(yg) f3(y3)-

The probability density function of the error in perigee ARP,
We have f = F' (br) = f(or)

Cumulative distribution function of AR,

The cumulative distribution function of the error in perigee
AR where F = P(AR) < Ar) = F(Arp)

The probability density function of the standardized normal
random variable X.

The joint probability density function of X,, X, , and X,
where Xis Xps and X, are components of the normal vector
X.

The cumulative distribution function for the standardized
normal random variable X.

The cumulative distribution function for the error in ec-
centricity AE.

The (3 x 3) identity matrix.

The Jacobian of the transformation between X;» X, X; and
Yo ¥y, Yo
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dy, oy. dy.

i i v i

IxX, 9 X, 8x3

T . oy, 9y, 9y,
x =

1r Xgy X3) mo 3%, 3%, ox,

94 9y3 9y

9%y 9x, ERS

where "mod'" means the absolute value of the expression
following it. '

K(A8) The cumulative distribution function for the error in true
anomaly AB.

1 A constant given by (see m also).
2r,
1 = < OAv, + 20’Ar0 (m > 1)
L Upper and lower limit (in number of standard deviations)

for the approximation to the range of each independent
normal random variable Y, (i = 1, 2, 3).

m A constant given by (see 1 also)

r 2
m = ‘/[2<VZ)UAVO + O’Aro] + (roaAy°)2

where (m > 1)

mod An operator which means the absolute value of the expression
following it.

(2N + 1) Total number of subdivisions (extending from “Lo, to tLoy )
for the approximation to the range of each independent
normally distributed random variable Y (i = 1, 2, 3).

Pi, The probability that the discrete approximation Y;' to the
normally distributed random variable Y, assumes the value
y; wherey ;k is the midpoint of the interval
(vi, = Oy;» ¥, + Oyy). We have

ig
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Pik1

Plvi, ~bv, S¥, <vi, +0%) (¥, = }) o,

where
(i = 1,2 3 and (k=1,2 3, ..., (2N + 1))
Also
qik
P, T g (see q;, and S;)

The joint probability that the discrete random variable ap-

proximations Y'l, Y;, Y é to the independent normal random

;rlariables Y,,Y,, Y, assume the values y'1’ , y'2k, y'31 . We
ave

Pii = P(Yy =9y, Y, =y, ¥y =y) = py Py Py
where (j, k, 1 = 1,2, 3, ..., 2N + 1)

The probab111ty that Y (i = 1, 2, 3) takes the value y;
k=1,2,3, » 2N + 1). P denotes "'probability" here.

Correlation matrix or covariance matrix of the normal vec-
tor X when p_ ixs = Pryxs T Pxyxs T P 0<p< 1.

A real symmetric positive definite square matrix of order 3.

Correlation matrix or covariance matrix of the normal vec-
tor X when o Xy = TP Pxixs = TPy Pyyx, = P e (0 < p <1).
A real symmetrlc positive definite square matrix of order 3.

Correlation matrix or covariance matrix of the normal vec-

tOI‘XWhen,OIZ—-p, /Oxlx3_/0 px xa——p,(0<p<1).
A real symmetric positive definite square matrix of order 3.

Correlation matrix or covariance matrix of the normal vec-
tor X when py 1%, = P Px x3_ Py Px,x ==-p, (0 2 p < 1)

A real symmetrlc positive detinite square matrix of order 3.

Value of the normal probability density function of Y, (i =1,
2, 3) at the point y'ik (k=1,2,3,...,2N + 1), i.e.,
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(see also P, ).
Q The covariance matrix of the normal vector Y. We have
Q = &Y'y = BPBT = CTPC.
r Radius of the earth.
r Perigee radius.

Calculated perigee radius (from the ship's tracking data).

Pcal
T, Required minimum perigee radius.
r, Magnitude of the radius vector at insertion.
S, A normalizing sum, i.e.,
2N+ 1
S, = Zqik (i =1, 2 3)
k=1
(see also pik)'
v, The magnitude of the velocity vector of insertion.
L] Normal random vector having the components AR _, AV , and
AT .
o
X-space Refers to the correlated '"space' of the normal random vari-
ables Xis Xy and X,
351 Normalized eigenvector corresponding to the eigenvalue
ANy=1+20 (0<p<1).
3'<2 Normalized eigenvector corresponding to the eigenvalue
>\2=1—p 0<p<1).
%, X, The dot product of the normalized eigenvector X, with the

normalized eigenvector X, .
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y-space

Y, Y, Y,
Y, Y, Y,
Z
z,, ,, Z,
ft
B;

The normalized eigenvector corresponding to the eigenvalue
ANy=1=-p (0<p<1.

Normal random vector having correlated standardized normal
random variables X1 X, and X, as components.

Standardized normal random variable. A component of X .
Standardized normal random variable. A component of X.
Standardized normal random variable. A component of X.

Discrete random variable approximations to the standardized
normal random variables Xy X, and X,

A standardized normal random variable.

Refers to the uncorrelated ''space’ of the uncorrelated nor-
mal random variables Y,, Y,, and Y,.

Normal random vector having the uncorrelated normal random
variables Y,, Y,, and Y, as components.

Values that the discrete random variable approximations
Y, Y,, Y; to the uncorrelated normal random variables

Y, Y,, Y;can take (j,k,1 =1,2,3,..., 2N+ 1).

Uncorrelated normal random variables. Components of the
normal vector Y.

Discrete random variable approximations to the uncorrelated
normal random variables Y,, Y,, and Y;.

Normal random vector having the uncorrelated standardized
normal random variables Z,,Z,, and Z; as components.

Uncorrelated standardized normal random variables. Com-
ponents of the normal random vector Z.

Coefficients in variational equation for A r. Functions of
r,veandy, . (i=1,2,3,4)

Coefficients in variational equation for Arp. Functions of
roveand y . (1=1,2,...,9).
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Ae A value for the error in eccentricity AE due to metric track-
ing errors by the insertion ship, We have NAe=e_ . -e.
cal
AE A random variable representing the error in eccentricity.

AE has the cumulative distribution function H(Ae).

ANy, A value for the error in flight path angle at insertion AT"_
where Al is normally distributed.

AT A normal random variable representing the error in flight
path angle at insertion.

AT A discrete random variable approximation to the error in
flight path angle at insertion A’ (Al is normally distributed).

A r, A value for the error in perigee radius AR_.

ARP A random variable representing the error in perigee radius.
AR has the cumulative distribution function F(Ar), and
probability density function f (Ar ).

AR; A discrete random variable approximation to the error in
perigee radius ARP.

Ar A value for the error in insertion radius AR where AR 1is
normally distributed.

AYe The error in true anomaly at insertion. A value A® can as-
sume.

A® A random variable representing the error in true anomaly of
the spacecraft at insertion.

AR, A normal random variable representing the error in insertion
radius.

AR! A discrete random variable approximation to the normal
random variable AR  where AR_ represents the error in
radius at insertion.

Av A value for the error in the magnitude of the insertion velocity

AV _ which is a normal random variable.
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AV A normal random variable representing the error in the
magnitude of the velocity at insertion.

AV A discrete random variable approximation to the normal
random variable AV_ which represents the error in inser-
tion velocity magnitude.

Ay, A subdivision of the range of the normal random variable

approximation for Y, (i = 1, 2, 3). We have
L . s
Ay, = (F) oy, where o, 1is the standard deviation of Y.

Yo Flight path angle at insertion measured from the normal to
the radius vector at insertion, pointing in flight direction,
against the direction of motion (i.e., clockwise if motion is
counterclockwise), such that the direction at y = 90°is
radially away from the center of attraction.

6 True anomaly of the spacecraft at insertion into parking orbit —
the angle measured from the perigee radius to the radius vec-
tor at insertion in the direction of motion.

A A variable in the secular (characteristic) equation of P.

Ny Ngs Ay Eigenvalues of the covariance matrix P or elements of the
diagonal matrix CTPC, the covariance matrix of Y. We have

_ 2 _ - 2
M %, M = yi,andk3 Tyt

A Covariance matrix of the normal random vector W having
correlated normal random variables AR, AV, and Al as
components.

7 Gravitational constant of the earth (398603.2 km? /sec?).

P Coefficient of correlation (|p| < 1).

PAr, Av, Coefficient of correlation between AR and AV_.

PAv, Ay, Coefficient of correlation between AV _and AL .

PAr Ay, Coefficient of correlation between AR_ and Al,.
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Px«x Coefficient of correlation between X, and X, (X, and X,
1%2 nre standardizad maprnal pandam wariahleal
alc didllualUulscu nulilial 1adlGlUill variarvils) e
Px,xs Coefficient of correlation between X, and X;. (X, and X,
are standardized normal random variables).
Py xs Coefficient of correlation between X, and X,. (X, and X,
are standardized normal random variables).
Ty1r Ty, Ty, Standard deviations of the uncorrelated normal random vari-
ables Y,,Y,,and Y,.
oy21 , ay22 , _oy23 Variances of the uncorrelated normal random variables Y,
Y,,Y,. Diagonal elements of C'PC.
Tp s Oy s O Standard deviations of the correlated normal random variables
[+] [+] o]

(ro + AR, (v, + AV,), and (v, + AT,).

OAry? “Avy® Ay, Standard deviations of the correlated normal random variables
AR_, AV , and Al',.

Opy,» OAv,r OA, ~ Variances of the correlated normal random variables AR,
AV , and AI' . Diagonal elements of A, the covariance matrix
of W.

OAr, Av, Covariance between the normal random variables AR and AV_.
Off diagonal element of A, the covariance matrix of W. We

have UAroAvo = pAroAVOO‘ArOO’Avo .

TAv, Ay, Covariance between t}e normal random variables AV_ and
Al’,. Off diagonal element of A, the covariance matrix of W.

We have Avy Ay, = PhvyAy, TAvyOAy, *

%Ar, Ay, Covariance between the normal random variables AR, and
AL, Off diagonal element of A, the covariance matrix of W.

We have OArgAy, — PAroAy,OAr,OAy,

Covariance between the standardized normal random vari-
ables X, and X,. Off diagonal element of P, the covariance
matrix of X (also called the correlation matrix). We have
since X, and X, are

o”‘1"2

lexz = pXIXZlec-XZ - pxl)(z

standardized variables.
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o
X2x3

X1x3

Covariance between the standardized normal random variables
X, and X,. Off diagonal element of P, the covariance matrix

of X. We have o = p o, o =p since X, and
2% 3 X2X3 X2 X3 X2%3 2

X3 are standardized variables.

Covariance between the standardized normal random variables
X, and X,. Off diagonal element of P, the covariance matrix
of X. We have o since both X,

XX T Payx3Tx x5 T Pxix
3 1X3 1 3 1X3

and X, are standardized variables.
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APPENDIX A

EXPRESSION FOR THE PERIGEE RADIUS IN TERMS OF THE INSERTION
PARAMETERS

The basic Keplerian two-body equations of motion which relate the insertion

parameters r_, v _, and y_ to the orbital elements a, e, and 6 (see Figure 1)
are:

1
v oo, (_ ; _) (A.1)

ro a

) _ vof"’r2cos2 Y,
(1 -e%) = a (A.2)
- a2
v, = al-e’) (A.3)

1+ ecosé

where r_, v_, ¥, are respectively the magnitude of the radius vector at insertion,
the magnitude of the velocity vector at insertion, and the flight path angle at in-
sertion. The semi-major axis is a, the eccentricity of the parking orbit is e,
and the true anomaly of the spacecraft at insertion is 6. The gravitational con-
stant is wu.

The perigee radius r, is the value of r, when 6 = 0°. From (A.3) we have:
r, - a (1 -e). (A.4)

Rewriting (A.1)

a = (A.5)

rOVO2 :
e = sin? Y, T m - 1] cos? Y, (A.6)
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where the positive sign is taken by definition. Using (A.5) and (A.6) we can write
(A.4) as:
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ADDENNTIY R
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4AL ATALN

THE CUMULATIVE DISTRIBUTION FUNCTION OF PERIGEE ERROR
BY NUMERICAL INTEGRATION

The perigee radius r_ can be expressed as a function of the insertion par-
ameters r_, v_, and ¥  (Appendix A)

r r_v? 2
= r (r,,v,7,) = ——————<1-1/sin?y_+|—-1 2
r, 1, (re, v 7%, 2 sin® 7y, o cos* Y,
I‘OV

(B.1)

In calculating these insertion parameters from measurements, the errors
Ar_,Av_, and Ay are introduced. Therefore, the calculated perigee radius
Foea will deviate from the actual perigee radius r, by the amount Arp.

ca

Arp - rpcal - rP N rp (ro * AI‘o’ Vo * Avo’ Yo + A’yo) - rp(ro’ Vo 70)'

(B.2)
Let us denote by AR ,AV , and A" random variables representing the er-
rors in the calculation of the insertion parameters.( 1Y Further, let us assume
that the random vector
AR

(]

w = |av (B.3)

o

AT

o,

has a trivariate normal distribution with zero mean vector and covariance
matrix A

(D¢ should be noted that Aro is a value which the random variable ARO can assume. The proba-

bility that AR  is less than or equal to Ar  is a function of Ar . Mathematically, we write
F1 (Aro) =P (AR0 < Aro)

where F1 (Aro) is the cumulative distribution function of ARO.
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UArO UArOAvo UArOA'YO

o TAv,Ar, (B.4)

2
O—Av ° Ay ° O_A')’

o

where UAzr ,asz , and UA2y are the variances of AR_,AV_, and A’ respectively,

and TAr Avy? TAv Ay g and OAr Ay, are the covariances between these random

variables. %

Then W has the density function®?’

=3 R
em 2 Az 2V Y (B.5)

Since W has a trivariate normal distribution, ARO, AVO, and AFO are
normally distributed random variables, and

ARP = o, (r, t AR, v + AV _, v+ A ) - T, (rg, v, 7,) (B.6)

is a random variable with a cumulative distribution function F (A r) and a prob-
ability density function f (A rp). Although F(A rp) can be expressed in integral
form, the integral cannot be expressed in terms of known or tabulated functions.
It must be evaluated by numerical techniques — either a Monte Carlo approach
or numerical integration. The latter approach will be described in the following

paragraphs. In an effort to simplify notation we will use matrix algebra wherever
possible.

Since AR ,AV_, and A are jointly distributed with a trivariate normal dis-
tribution, they can be expressed as linear functions of 3 uncorrelated normally
distributed random variables, Y., Y, and Y,. And, since uncorrelated normally

(Z)By definition op Av. ~ PAr Av. OAr OA, Where Op A is the covariance between ARO
o [ ] o o o o] o,
and AVO, 'OAroAvo is the coefficient of correlation between ARO and AVO, and %A, and Ay,
are the standard deviations of ARO and AVO respectively.

GWT is the transpose of W, A7l is the inverse of A and |A| is the determinant of A.
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- J
sense), their joint probability density function is given by the product of their
marginal distributions. This is the essence of the technique. FlI‘St a linear
transformation is made from the correlated space of AR, , AV, and A" to an
uncorrelated space of Y,, Y,, and Y,. Computations are °made in the uncorre-
lated space to obtain the Jomt probability density function of Y,, Y,, and Y,.
Then, using the inverse linear transformation, the joint density of AR, AV, and
Al is obtained. Finally, the probability density function of perigee error ARp
is calculated using (B.6) and values for r» v,and y . The cumulative distri-
bution function is obtained by summing the probability density function of ARP.

digtributed random variahles are necessarily 1hr‘npnnr‘nh~ (in the “I”Obwblli."

Let us first express AR, AV , and Al in terms of standardized normal
random variables X, , and X, () The reason for doing this is to avoid
numerical problems in the machme program which diagonalizes the covariance
matrix.

ARO - UAro xl
AVo - TAv X2 (B'7)
A = Ty, X3

From (B.7) it is seen that the coefficients of correlation between the vari-
ables X;» X,, and X; are the same as the coefficients of correlation between the
variables AR, AV_, and A" . For example, the coefficient of correlation between
X, and X,, Py, x, 18 the same as the coefficient of correlation between AR, and
AV_, since(S)

O—x1x2 UAro O.Avo 8 (xl XZ) 8 (UAro Xl UAvo X2)
Joj = = = (B.S)

X1 X
142 o T O'Aro O'Av O'Aro O—AVO

o

()The standardized normal random variable X has zero mean and unit variance, and probability

density function g(x) given by:

gx) = @m e x/2 (< x < o),

(5) S(Xl) is the expectation of a random variable Xl' & is the expectation operator.
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€ (AR, AV,) KAr Av,

- _ _ (B.8
“Ar, A, “Ar, Ay, FArolva cont'd.)
Denoting by X the random vector
Xy
X = X, (B.9)
X3
and by A the matrix
O‘Ar O O
A = 0 oA, 0 (B.10)
0 O UA’)’O
the transformation indicated in (B.7) can be written as
V = AX (B.11)

Thus X has a trivariate normal distribution with zero mean vector and co-
variance matrix P (also called the correlation matrix) given by (8>

P = &XXTy = €A 1w twyr] = elarwwr (A7)

= A-lg(wa)(A-l)T = A-lA(A-l)T = A"l AAT? (B.12)

(G)The covariance matrix of a random vector X with zero mean is defined as £ (XXT) where € is

the expectation operator.
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/ 1
1 PAr A,

’OArOA')‘O

PAs Av, pAroAvg\

1

PAv Ay,

PAv A, 1

/

0

px1x3

1

X1 X2

o

©

X1 Xp

X2 X3

pxlx

o/

3

X2X3

(B.12
cont'd.)

We now wish to express X as a linear function of a normal random vector
Y having components which are uncorrelated. Then, since W is a linear function
of X, the components of W will also be linear functions of these same uncorre-
lated random variables. Denoting by Y,, Y,, and Y, uncorrelated normally dis-
tributed random variables we can write the system of equations as

or in matrix form

where

C

11Y

+
Cop Yy T Cp ¥y t 03 Y

T C3 Yyt Yt e

€11 €12
a1 €22
€31 €39
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1 T e, Y, T e,
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Y

Y3
3

3

(B.13)

(B.14)

(B.15)

(B.16)



Since C is a nonsingular square matrix, the inverse B - C'1 exists, and we
may write the Y vector as¢”’

= -1 =
Y C'X BX (B.17)

or

Y, = by Xyt by, Xyt by Xy

=<
|

2 b21 X, * b22 X, t b,3 X, (B.18)
Y, = by Xyt by, X, bysX;

Since Y,,Y,, and Y, are uncorrelated, the following relations hold among the
elements of B and the variances and covariances of X;» X, X, and Y, Y, and

2 2 2 2
o B b+ bt b3t 20 b0, ., T PaPisfa T P Pis P y,)

Oy by * bi + bt 2(byibyyn, T Paabys by, byy Pas Py xy)
in = bj; * b, * byt 2(by; by, Pxix; T P32 b3z fyu,u, T P3Py fiy,)
Tyivy byybyy T bybyy ¥ bygbyy ¥ (byybyy ¥ by Byy) Ay x, (B.19)
TPy by T by byg) Ay T (byibyy T by Byg) o, T 0
Oyays  DParPsy ¥ by byy T bygbyy T (byybyy T obyy byy) Oy,
T (byybyy T Dy by3) Oy,yy T (Paybyg by byg) oy, T 0
(7. is the element of B in the i*! row and j® column.

46



“yivs Dyybgy ¥ byyby, T byybyy + (byybgy ¥ by byy) Pxyx (B.19
cont'd.)

t (byy bgg * by, byy) Prgxg T (PyyBgg T by byy) Peyxg 0

In matrix notation (B.19) is equivalent to the requirement that

Yl
Y = |y, (B.20)
Y3
have a covariance matrix Q given by
Y2 Y, Y, Y, Y,
Q = &WT) = € |vy,y, Y,? Y, Y,
Y3 Y1 Y3 Y2 Y32
€Y E(Y,Y,) E(Y,Yy)
= | €, Yy € (Y,5 € (Y, Y,)
£ (Y, Yy € (Y, Y3) € (Y32>
O—y21 Uyl Y2 O—y 1¥3 Cr3’21 0 0
T Ty, %ys Tyavs | | © Ty O | (B.21)
UY1Y3 O’3/2373 UYa 0 0 O—yi
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However Q can be written also as

Q = EWT) = BEXXTHBT = C'PCTHT (B.22)
Thus, the problem becomes that of finding a nonsingular matrix which

diagonalizes P. From matrix theory, since P is a real symmetric square

matrix of order 3, there exists an orthogonal matrix E of order 3 such that
FPET = D, where

A 0 0
D = | o \, 0 (B.23)
0 0 A

is a diagonal matrix of order 3.

Moreover, since P is also positive definite, the diagonal elements (eigen-
values) A, >\2, and A, are all positive. Any diagonal matrix which is obtained
by another orthogonal transformation of P, has the same diagonal elements A |,
N,, and A, possibly in a different arrangement. Hence, in the above we can

let B be an orthogonal matrix. Then A, A, and A, are the variances of Y ,
Y,,and Y, or ayzl s oyzz, O‘y23.

As an example, let op. A, = OA,_ Ay, T PAr Ay, "~ P- (0 < p < 1) Then
P is given by

1 Je Je
P = 0 1 0 (B.24)
je P 1

To find the eigenvalues of P we must find the roots of the secular equation
(characteristic equation)

IP-XI| = 0 (B.25)
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Here I is the identity matrix of order 3. Note that the eigenvalues of a
real symmetric matrix are always real.

Equation (B.25) can be written in expanded form as
(A=1)3 = 203 - 3p2(A-1) = 0 (B.26)

Solving (B.26) for the roots we obtain

Moot T 12
= 2 = -

A, oy, 1-p (B.27)

Ay = cryi = 1-p

Since two of the roots are equal, the orthogonal matrix for transforming P
into diagonal form is not unique. However, it can be constructed. Let us now
construct the orthogonal matrix C. Since C is orthogonal, C*! = CT. Therefore,

C = BT or
by b,y by, Ci11 Ci2 Ci3
c = by, by, bs, - Ca1 €22 Ca3 (B.28)
b
13 by b 3, €31 €32 C33

The eigenvector, X, = (c,,c,,c,,)T corresponding to A, = (1 + 2p) must
be such that the components c,;, =12, 3) must satisfy the matrix equation
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or

1 P P €11 €11
0 1 Yol Cyy = (1+2)p) Cyy (B.29)
P o 1 Cyy C3y

or expanding the above

- 2cy;; t ¢yt ¢y 50
Cy - 2c,, * c5y = O (B.30)
Cy; v €y T 2¢3, T 0

From the first two equations of (B.30) we obtain c,, = c,, and from the
second two equations c,, = c;,. Since equation (B.29) is linear, we may make
the length of the vector ?(1 unity, thus requiring

2 2 2 = 1

cy tec,y tegy T (B.31)
Equation (B.31) is satisfied if
_ _ _ 1
Cyy = €y T €3y T -~ '/—g (B.32)

—

The eigenvector x, corresponding to A, = (1 - p) must be such that the
components of Ciy (G = 1, 2, 3) satisfy the matrix equation

€12 €12
Plc,, | = (1-0) | c,, (B.33)
€32 C32
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from which we obtain three equivalent scalar equations in the c. ,'s

Cig ¥ Cyy t 5, = 0
Cyy T Chy t ey, = 0 (B.34)
Cizg ¥ Cyp t ¢, = O
€12 Ci13
We may choose for x, = |c,,]| and x; = | c,, any two linearly inde~
C32 €33

pendent vectors subject to the condition that they are orthogonal and that they

satisfy the above equations in (B.34). Setting c,, = 0 in (B.34) we obtain c,, =
1 -

-c;,- Thus, if Chp = W and c,, = - 7_2—, X, will be normalized. Furthermore,

we will have the dot product (%,) * (%,) = 0.¢®> Hence

0

1
) 7 (B.35)

To obtain the components of X, we use the fact that we must have Xt Xy =
and X, * X; = 0 simultaneously, that is

1
o

X, * X c +c23+c

1 3 13 33

(B.36)

2 X3 €23 ~ C33

®)1¢ should be noted that the eigenvectors of a real symmetric matrix are necessarily orthogonal.

51




from which we obtain

Ciz = T2C,
and (B.37)
€23 = ©C33
Normalizing we obtain
_2
Y6
4 1
X, = ﬁ (B.38)
1
Y6
Thus, the orthogonal matrix C is
1 0 -2
V3 3
c = |-L 1 1 (B.39)
3 Y2 6 '
1 1 1
3 V2 Y6
and therefore B is
1 1 1
V3 3 V3
B = 0 . . B.40
V2 ) (B-40)
2 1 1
13 16 3

It can be verified that the elements of B satisfy the equations in (B.19) which
relate the variances and covariances between the components of X and Y with

Pxixs = Pxyxs = Pxyx; = ©- The linear equations for this example are there-

fore, from (B.13)
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(B.41)

For the other combinations of signed values for the correlation coefficients

/Ox1x2’lo ’and/oxlx

X2X3

, which keep the covariance matrix of X nonsingular we

have the following orthogonal matrices C,,C,, and C, which diagonalize P,

P,, and P, respectively.

For the covariance matrix

1
P, = -p
-p
the orthogonal matrix
1
Y3
1
C. = —_—
! V3
1
Y3
diagonalizes P, .
For the covariance matrix
1
P, = -p
Yol

—t

-p
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P (B.42)
1
2
6
____1_ (B.43)
= .
L
Y6
Io)
-p (B.44)
1



the orthogonal matrix

diagonalizes P,.

And, for the covariance matrix

the orthogonal matrix

diagonalizes P,.

- - |-

ot

R}

—+

B~ = -

S -

(B.45)
-p
-p (B.46)
1
(B.47)

3~ 3= Ho

Each of the orthogonal matrices indicated above was obtained in the same
manner. It should be noted that in this special case where each coefficient of
correlation has the same absolute value, each covariance matrix has the same

eigenvalues:

AN=1+20,0,=1-p,A3=1-p, inasmuch as the char-
acteristic equation is the same in each instance.

In the same manner as was done for the random vector W we may express
Y in terms of a standardized normal vector Z having uncorrelated standardized
normal random variables Z,, Z,, and Z; as components.
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Y. = & Z (B.48)

Finally, we may write AR , AV , and A"  as linear combinations of Z , Z,,
and Z,.
3

AR, = (oA, 9y,)C112y ¥ (UAro"yz)Clzzz * ("Aroays)clsza
AV = (UAvOUyl)CuZl + (aAvoayz)cnz2 + (CTAVOO‘YS) c,s 2, (B.49)
AT = (UA’ykol)C3lzl + (UA%U”) Cy0Z, + (aAyoay3) C35Z,4

Now, since Y, ,Y,, and Y, are uncorrelated normal random variables, they
are independent in the probability sense. (®’ Therefore, their joint probability
density function f (v, y,,y;) factors into the product of the marginal distribu~-
tions of Y,,Y,, and Y,, or f (y,), f,(y,), and f (y,).

F(yo v va) 7 £i(yy) £,(yy) f5(y3) (B.50)

Denoting by g (x,, x,, x;) the density of X,, X,, X,, and noting that by (B.13)
the transformation from the y-space to the x-space is one-to-one, as well as
from the x-space to the y-space (B.18), the density of X,, X, and X, is

g(xlvxgvx;;) = f[yl(xl,xz,x3),y2(x1,x2,x3),y3(x1,x2,x3)]J(x1x2,x3) (B.51)

e note that uncorrelated random variables are not always independent. However, independent

random variables are always uncorrelated.
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whereJ (x,, X,, X;) is the Jacobian

9y, oY, 9y,
Bxl 8x2 8x3
B J 9y, 9y, oY,
J(x{, %5, x3) = mo %, %, o, (B.52)
ay3 ay3 ay3
Bxl 8x2 Bx3

and "mod'" means the absolute value of the expression following it. Using (B.18)
we can compute J (x,, x,, x) as follows:

b b

11 12 13
J(x,, x,, x3) = mod| b,, b,, b, = mod |B] (B.53)
b31 b32 b33

However, since B is an orthogonal matrix, J (x,, x,, x;) = 1. Therefore,
using (B.50) and (B.51) the joint density of X,, X,, and X; with the aid of (B.13)
is given by

P{x1<X1§xl tAxy, x, <X, < x, t AKXy, x; <Xy < x5 +Ax3}

T (XX, X)) Ax Ax, A%y = £(y Y, Y3) Ay Ay, Ay,
= Ply, <Y, 2y, + By 11y, <Yy Sy, + 0y,yy < Yy Syy + Ay} ly, by, ly,
- P{C11x1+021x2+°31x3<Y15C11(x1+A"1)+°21(x2+Ax2)+°31(x3+A"3)}

x P{oy Xyt CyyX,yt ey <Y, <0 (X HAX ) e, (Xt X))+ oyp( Xy +0xy) )
X P{013x1+c23x2+c33x3<Y3_<_c13(x1+Ax1)+023(x2+Ax2)+c33(x3+Ax3)}

x ly Ny,Ny,
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frleiixite Xt ogxy) PICIPE PRSP IS PP 39 fa(cysxyt oy %, t oy %3)

X (cllel+c21Ax2+c31Ax3) x (cl2Ax1+c22Ax2+c32Ax3)

X (Cyadx e, Xyt oy Axy) (B.54)

For purposes of machine computation, the range of each random variable
Y. (i = 1, 2, 3) was approximated by (2N + 1) mutually exclusive intervals of

L
length (N') o, extending from ~-L %y, to Lcryl , and the probabilities of falling

within these intervals approximated in the following manner.

First, (2N + 1) values for the normal probability density function were cal-

«culated for each Y,

a, = (2mo2)7H e CHV (B.55)
where
. _ (L
vi, = (F) [k -(N+ D] o,
(k= 1,2,3, ..., (2N + 1))
(i =1,2,3)

Then, the sum S, was formed

2N+ 1
S, = a, (B.56)
k=1
Next, the 9, 's were normalized, i.e., P;, 's were formed where
qik
Pis s (B.57)
(k = 1,2,3, ..., (2N + 1))
(i =1,2,3)
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Next, defining Y} ,Y,, and Y; as discrete random variables approximating
the normal random variables Y, Y, and Y, we may write

1k k

P(Y; = vi) = » (B.58)

(1 = 1,2,3)

(k =1,2,3, ..., (2N + 1))

And, we may write the probability that Y, should fall within the interval

. 1 , 1
<yik ‘(7)AY;, Vi +<'2')Ayi> (B.59)
where
sy, = (F)
Vi - N o—yx
as follows
' —_ 1) ' (1> [ J— ] —
Pevi, <7Ayi <Y, <yl +{zpy pxP(Y=yl) = b,  (B.6O0)
(i =1,2,3)

—
=
il

1,2,3, ..., (2N + 1))

Thus, each normally distributed random variable Y, (i = 1, 2, 3) has been
approximated by a discrete random variable Y, (i = 1, 2, 3) in the range —Loy_
to +Loy_ and having probability mass points P;, i-1,2,3;k=1,2,3,...

. 1 1
(2N + 1)) at the center of each subdivision (yi'k - (——2— Ay s y;k + (7>Ayi) .

It is easily verified that the probabilities for each Y sum to 1, since

2N+1 2N+ 1 1 2N+ 1
sy g ) T
k=1 k=1 k=1
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Since each Y| can assume (2N + 1) possible values, y. » each with probability
p; (k=1,2,...2N + 1) there will be a total of (2N + 1)° possible values for

the approximation to the joint probability density function of Y, ,Y,,and Y,.
Since the Y, 's are independent, the probability of occurrence Pyt of each com-
bination of values for y, ,yék , and yél (Gsk,1 =1,2,3,...,2N+ 1)) is

J

given by the product of p, , Py and P, i.e.,
]

Pix1 = Py, Py Py (B.62)
(j,k,l =1,2,3, ..., (2N + 1))

In order to distinguish between the continuous random variables and the dis-
crete approximations to these variables, let X, X5 X35 AR, AV, AT, and ARF'J
be the discrete random variables which approximate X, X,, X5, AR, AV , AT,
and ARp , respectively.

For each combination of values for Y, ,Y,, and Y, , the probability of occur-
rence was obtained using (B.62), the inverse transformation to the correlated
set X, X,, and X; made using (B.13), and values calculated for AR, AV!, and
AT using (B.7). Since there is a one-to-one correspondence from the uncorre-
lated y -space to the correlated space of AR , AV, and A", the joint density
function approximation of AR , AV , and AI"  will have (2N + 1)3 possible values,
and for each combination of values for AR(‘), AV!, and AT" ! we may obtain a value
for AR; , using (B.6). Therefore, the discrete approximation to the probability
density function of AR, will also have (2N + 1)3 possible values. At this point
we should note that ARp as given in (B.6) depends on actual values r_, v_, and

Yor

We will now discuss how the actual values for r_, v_, and y_  were calcu-
lated.

First, actual values for the semi-major axis a, the true anomaly of the
spacecraft at insertion ¢ , and the eccentricity of the parking orbit e, were

assumed.

The insertion radius r_ was obtained using (A.3) of Appendix A.

a(l - e?)

o T T+ ocos?d (B.63)
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The insertion speed v, was obtained from (A.l) of Appendix A.

2 1
v, = u(r—' - ?> (B.64)

o

In order to obtain the flight path angle at insertion _, let us rewrite (A.2)
of Appendix A.

rO\/O2 rO
1-e%2 = m ( A > coszyo (B.65)

From (A.1)

°M° = 2 - (ra°) (B.66)

2 = o) (Lo 2
1-e* = 2 -\ 7)) cosTY, (B.67)

r
Solving for (—a-> in (B.63) and substituting the result in (B.67), we have

. _1< e sin 6 )
Yo an

1+ e cos & (B.68)

The actual (or assumed) perigee radius r  was obtained using (B.1).

Thus, with assumed actual values for r_,v_, 7, , and T and by using all
the (2N + 1)® possible combinations of values for Y, ,Y,, and Y, with their
corresponding (2N + 1)3 probabilities Pjx1 = P, Py, P3, G,k,1 =1,2,3,...,

(2N + 1)), an approximation to the probability density function of AR/ through
the transformations indicated in (B.13), (B.7), and (B.6) was obtained.
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It is easily seen that the probability density function approximation for AR
sums to 1.

[oo]

2N+1
Far) dor) x ) ey,
i,j,k=1

-

(B.69)
2N+ 1 2N+ 1 2N+ 1 2N+ 1
- 2 P1; Py; Ps, B <2 :p11> <Zp2j> (2 :p3k> = 1
ivjok=1 i=1 i=1 k=1
where f (Ar)) is the probability density function of AR .
The cumulative distribution function of AR, orF (Ar)) is given by
Ar,
F(Ar)) = If(x)dx (B.70)

-

For purposes of machine computation, the range of AR, was subdivided into
2000 mutually exclusive intervals or 'bins' one tenth of a kilometer wide and
extending from -80 kilometers to +120 kilometers. For all values of AR; falling
within one of these intervals, the associated probabilities were summed. This
can be done since all of the (2N + 1)3 possible combinations of values for AR/,
AV, and AT"! are mutually exclusive. In this fashion we obtain an approximation
to the probability density function of AR . The cumulative distribution function
approximation for ARP was then obtained by summing the probability density
function approximation for AR .

A Fortran IV computer program was written and used to calculate the
probability distribution of perigee error on the UNIVAC 1108 computer. For
L =4 and N = 50, i.e., approximating the normal curve from -4 standard de-
viations to +4 standard deviations in (2N + 1) = 101 equally spaced intervals
(0.08 standard deviations in width), the calculations took approximately 4 minutes
to obtain the probability density function and cumulative distribution function ap-
proximation to AR for a given set of insertion conditions.
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Expression For the Error in Perigee For a Circular Orbit

The expression for the error in perigee for a circular orbit is somewhat
less complicated than the expression in (B.2). We will now treat the circular

case.

Let us first rewrite equations (A.1), (A.2), and (A.4) of Appendix A.

V02 ro2 cos2)/o
1-¢e% =
wa
2
. (i)-(‘“ >
a r, "
r. = a(l-e).

P

Substitute (B.72) into (B.71) and also into (B.73)

or

Rewrite (B.34) and multiply by ro.

Vo To COS2’)/O 2 v
rp(l-e)(1+e):< >rp<—- °>.
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(B.74)

(B.75)

(B.76)

(B.77)



Cancel (1 - e) in (B.77) using (B.75), and substitute (B.76) into (B.77) for

(e + 1). The resiit is

N V02 r, rp2 _ ) vo2 r03 Cos2 70
2r 1, —H 21‘p + P . (B.78)

Substituting (r_ + Ar ) for r_, (v + Av ) for ver (7, T By ) for 1y,
(rp, + Arp) for T and collecting terms, we have

2
Ar + [2 +(—)v2r:| Ar Ar
p wlo 'p o 'p

+ l:— (7) v?r3 sin Y, cos 70] Ay,

+ [— <7>v02 r.2 sin y_ cos ’yoJ OAr Dy,
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+ [(%-) v 2r_ cos? 70] (Ar )2+ [(-%-) rlcos? vy - (—/i-) r, rp2:| (Bv)?

+ [— (—) V02 ro3 cos (2)/0)] (A70)2 + higher order terms.

(B.79)

2
r v
For a circular orbit ¥, = 0°,< ° ) =1, and r, = rg. Making these sub-

7

stitutions in (B.79), and neglecting terms of order higher than the second, we
have

(B.80)

Avo Arp Aro 2
+4< v0> < ro> = 3( ro> - (Ayo)2

and finally,

2
r r
Arp = 2 |:<‘V—> A Aro] t [2 (";0—) Av  + Aro] + (r, A70)2 . (B.81)

o

The minus sign has to be used in (B.81) since Ay_ has to produce a negative
Arp if Ar_ = Av_= 0. (The plus sign is applicable to the error in apogee.)
Thus, the perigee error for a circular orbit becomes:

2
r, . 2r
Ar_ = 2 [(—) Av_ + Ar] - [( ) Av  + Aro] t(r, 0707 . (B.82)
P v [o] (o] v
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~f dlan D~ lialai134+, o~ 3
Derivation of the Probability Density Function of Perigec Error For a

Circular Parking Orbit When the Insertion Exrrors are Perfectly Corre-
lated and Normally Distributed.

<<

As a check against the calculations performed by the computer, the prob-
ability density function of the error in perigee for a circular orbit was obtained,
assuming the insertion errors to be perfectly correlated (coefficients of corre~
lation between the insertion errors of +1.0) and normally distributed.

If AR , AV_and A are normally distributed random variables mutually
correlated with coefficients of correlation of +1,0, there is complete linear de-
pendence between them. Thus, they will vary in the same sense. Let X denote
the standardized normal random variable (zero mean and unit variance). We
may then write (B.82), substituting AR, for Ar, AR, for Ar , AV for Av,, and
Al for Ay, as

2

r 2r
(o] o]
ARP = 2 [(V—> AV + ARO] - /[( S )AV0 + ARO:] + (r, AFO)2

r, 2r 2
_ _ 2 |-
= 1 <Vo) O'Avo + UAro X [( v ) UAVO + O’Aro +(r, UA,),O) |X |

(B.83)

where TAry? “Av,? Ay are the standard deviations of AR, AV and AT"_ respec-

o

tively.

Letting 1= 2 [:(v°> UAVO + UAro] and
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we can write (B.83) as

AR, = 1X-m|X| (B.84)

Letting F(/r)) denote the distribution function of ARg, G(¥) the distribution
function of X, and assuming m > 1, we have:

F(Ar)) = Prob{AR <Ar } = Prob{1X - m|X| < Ar} (B.85)
For X < 0, |X| = -X, and we have
Arp Arp
Prob{1X - m|X| <Ar } = Prob{XS 1+m}: G(l +m> (B.86)

For X2 0, |X| = X, and we have

Prob{lX-m|X| <Ar } = Prob{(l - m)X < &r,}

_Ar
Prob{(m -~ 1)X > - 4r_} = 1—Prob{xs (m——%}

_ ( " b
S 1-6 (m-1)> (B.87)

Since the events X < 0 and X 2 0 are mutually exclusive, the total probability,
or F(4r) is given by the sum of (B.86) and (B.87)

F(Ar,)) = Prob{lX - m|X| <ar }

Arp - Arp
= Prob{X < m} + Prob{X > —(—m}

(B.88)
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P \ -
= 1+G \(T:n‘)) - GK(;—:—IT) (céft"?;

Letting f (Arp) be the probability density function of AR,, and g(x) the
standardized normal density function, then we have the following relationship
between f(Ar,) and g(x).

, 1 Arp 1 ‘Arp
f(Arp) = F(Arp) = <1+m>g<l+m> +<m-l>g<m-1> (B.89)

These functions f (A r ) and F@ r ) are shown in Figures 17 and 18.

f(Arp)
0.24

0.22
0.20 /
0.18 /
0.16| /
0.14 /
0.12 /
0.10 /
0.08| /
//

0.04] /

PROBABILITY / (km)

0.02

-30 -25 ~20 -i5 -10 -5 0 Arp

(km)

Figure 17. The Probability Density Function f of Perigee Error ARP for a Circular Orbit when

the Insertion Errors Are Perfectly Correlated (“Ar AV T PAV Ay T PAr Ay = T1.O)
Insertion Parameters: a = 3544 n.mi. (6563 km), e = 0. ° °c e
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1.0

0.8

F(Arp)

0.6

0.2
/
/
0 (km)

0.0
-30 -25 -20 -15 -10 -5
(N Y Y T VRN T Y Y N TR N EN G SO S B Arp
-15 -10 -5 0 (n.mi.)
Figure 18. The Cumulative Distribution Function F of Perigee Error ARP for a Circular Orbit
when the Insertion Errors Are Perfectly Correlated (0A, Ay = PAv Ay = PAr Ay ~ 1.0

Insertion Parometers: a = 3544 n.mi. (6563 km), e = 0.0.

Expression for the Perigee Error for Eccentricities In the Range

0.005 < e < <0.05
For eccentricities in the range of approximately 0.005 to 0.05, the following
expression taken from Reference 5 (equation (9)) is a good approximation for the

error in perigee. It is repeated here.
(B.90)

1
(2 - cos §)AR_+ 2(1 = cos O)r, <T)AVO - (r,sin 8)AT,

)

AR =
P

It is evident that, if AR, AV,, and A", are all normally distributed, then, for
a fixed ¢ (true anomaly of the spacecraft at insertion) and e (eccentricity),
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AR will also be normally distributed, having a zero mean, and a variance given
ey
0y

2
r
2 = - 2 .2 - 2 (¢ 2
TAr (2 = cos 0) Ay, * 4(1 - cos 9) (Vo> Ay,

r

. o
+ r02 Sm260A2y° + 4(2 - cos ) (1 - cos8) <-;—) PAry Avy “Ar, OAv,
Lo

r
o

- 4(1 - cos 9)<v )(ro sin 0) PAv, Ay, OAv, Ty,

]

(B.91)

= 2(2 - cos8) (r, sinf) pp, Ayo OAr, TAy

In order to compare the distribution of AR as calculated by numerical in-
tegration with the normal distribution approximation, we note Figures 19 and 20.
In each instance, the semi-major axis is a = 6563 km, the eccentricity e = 0.01,
and the standard deviations of AR _, AV , and A’ are

Aey, 0.8 n.mi. (1.4816 km)
16
Oy, = (?) ft/second (1.62 m/sec) (B.92)

_{0.16\° ’
Ny, - \ T3 (9.3 mrad)

In Figure 19, the coefficients of correlation between the insertion errors
are all +0.9. In Figure 20, the insertion errors are uncorrelated. Both figures
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show the 99.5% probability points as a function of true anomaly . The agree-

ment between the two curves is good.
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Figure 19. Comparison Between the Required 99.5% Padding as Calculated by Numerical

Integration and the Required Padding Using a Normal Distribution Approximation. Insertion

Parameters: a = 3544 n.mi. (6563 km), e
(Coefficients of Correlation = +0.9).

= 0.01. Insertion Errors Are Positively Correlated
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Figure 20. Comparison Between the Required 99.5% Padding as Calculated by Numerical
Integration and the Required Padding Using a Normal Distribution Approximation. Insertion
Parameters: a = 3544 n.mi. (6563 km), e = 0.01. Insertion Errors Are Uncorrelated.
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APPENDIX C

THE CUMULATIVE DISTRIBUTION FUNCTION OF THE ERROR IN
ECCENTRICITY.

The eccentricity e can be expressed as a function of r_, v_, and v . From
Appendix A (equation A.6)

r v 2 2
_ _ . 0 o o
e = e(r,, v, ¥,) =y /sin“y + < " - 1) cos? Yo (C.1)

In calculating the insertion parameters r_, v_, v, the errors Ar, Av , and
Oy, are introduced. Therefore, the calculated eccentricity e__, will deviate
from the actual eccentricity e, by the amount Ae

De = e —e = e(r, tAr, v, tAv , y tbhy ) -e(r,, v,, ¥,) (C.2)

cal

Letting AE be a random variable representing the error in eccentricity, and
AR, AV, A random variables representing the errors in insertion radius,
speed, and flight path angle respectively, we may write with the aid of (C.2)

AE = e(r, +OR, v  +AV , v +AT ) —e(r,, v, 7,) (C.3)

The probability density function approximation for AE was obtained in an
analogous manner as was done for AR (Appendix B). In an effort to shorten
machine calculation time, however, each normal probability density function
(in the uncorrelated y -space) was approximated by a discrete probability dis-
tribution having 81 mass points (instead of 101), extending from -4 standard
deviations to +4 standard deviations. The width of each bin for the error in ec-
centricity was taken as 1075,

The Error In Eccentricity for a Circular Orbit

Equation (C.1) may be written

2r°v°2 ro2 vc‘4
1-e2 = m cos? Yo ~ > cos2)/0 (C.4)
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Substitute (e + Oe) for e, (r, + Ar_)
for 7y, and collect terms.

2
1-e?-2efe- (Le)? = (:) rovo2 cosz0

+{(;1—2> rlvl} cos(2y,) ‘(“i‘)ro"oz cos (270)} (By,)?

) 4
+{(—2) r.2 v siny_ cos y, —(-;)ro v,? siny_ cos 'yo} By,

4 4. 4y , .
+ ( )rovo sin ¥y _cos v, _<T>v° sin y cos 7, AroA'yo

1
- 2.4 2
( 2)ro v,h cosTy, (C.5)
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1
'-{(—;) vo4 005270} (Ar0)2 + higher order tems (C.5
# cont'd.)
rO v02
For a circular orbit €= 0,< 7 ) = 1, and Y = 0°. Making these substi-

tutions in (C.5), and neglecting terms higher than the second order, gives,

4 4
1-(be)? = 2- (by)? (—V—Z) (Bv)? - (v

[e]

1
P A 2
(53) @

Solving for Ae in (C.6), we have,

DNe = i‘/{(f )Avo +(r1 )Aro}z + (Ayo)Z (C.7)

) Ar Av -1 (C.6)

[o] [}

Since e = 0 for a circular orbit and the calculated eccentricity must be
positive (by the definition of eccentricity), Ae in (C.7) must also be positive.
Therefore, the error in eccentricity is,

2
e B T e
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APPENDIX D

THE CUMULATIVE DISTRIBUTION FUNCTION OF THE ERROR IN
TRUE ANOMALY.

Using (A.3) we may calculate ¢

{a(l - e?) —ro}
8 = cos™! (D.1)

roe

where a and e are functions of r_, v_, andy_by (A.5) and (A.6)

a = —— (A.5)

s v 2 2
e = 3/sin? Yo +< Oluo - 1> coszyo (A.6)

The correct quadrant for ¢ may be resolved from inspection of (B.68)

e sin &
tan % = Tiecosd (B:68)

YA

We see that for y_ > 0°,0<9 180° and for y_ < 0° -180° < & < 0°

Thus, we may write

6 = 6 (r, vy 7y) (D.2)

Letting &R _, AV_, A" be random variables representing the errors in in-
sertion radius, speed, and flight path angle, with the aid of (D.2) we may write

A® = G(r tIMR_, v, tAV, y +AT )= 6(r,, v, 7,) (D.3)
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where A® is a random variable representing the error in true anomaly for a
non-circular orbit.

The cumulative distribution function of A®
K (08) = P (AB < 16) (D.4)

may be seen in Figures 21 and 22. These were obtained in analogous fashion as
for AR, and AE.

Figure 21 is for uncorrelated insertion errors, an eccentricity of e = 0.001
and true anomalies at insertion of & = 0°, 90°, 180°, and 270°.

Figures 22a and 22b are for the same conditions of true anomaly at inser-
tion and correlation, except the eccentricity is 0.005.

1.0 =
e =0.001 /
- b
0.8 PArg Ave =PAveBYe = PlrgAye = 0.0 > 7
Lt
LEGEND 6 -~

0.6\_ _____ 0° , 180° 7 <
—_ ' P
> ° o
3 —_ 507, 270 /
v //

——
0.4 Z
7
7
s
7
0.2 =
/
L______ =
— -
0.0 —_
-120 -90 -60 -30 0 30 60 90 120
Ad (degrees)

Figure 21. Cumulative Distribution Functions of the Error in True Anomaly for Various Actual
Valves of True Anomaly at Insertion. Insertion Parameters: a = 3544 n.mi. (6563 km), e =

0.001. Uncorrelated [nsertion Errors.
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Figure 22a. Cumulative Distribution Functions of the Error in True Anomaly for Various Actual
Valuves of True Anomaly at Insertion. Insertion Parameters: a = 3544 n.mi. (6563 km), e =
0.005. Uncorrelated Insertion Errors.
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Figure 22b. Cumulative Distribution Functions of the Error in True Anomaly for Various Actual
Values of True Anomaly at Insertion. Insertion Parameters: a = 3544 n.mi. (6563 km), e =
0.005. Correlated Insertion Errors (PA, Ay = 10.9, op, Ay = PAe Ay © +0.9)
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The "8-sigma' limits used for AR, AV , and A" are

30Ar° = 2.4 n.mi. (4.44 km)
3op,, = 16 ft/sec (4.87 m/sec) (D.5)
3UA70 = 0.16° (2.79 mrad)

From inspection of the curves it can be seen that for parking orbits with
low eccentricities (e < 0,001) true anomaly at insertion ¢ cannot be determined
accurately. For example, due to tracking errors, for e = 0.001, 4 = 0° or
¢ = 180°, and uncorrelated insertion errors (dashed curve of Figure 21) there

is a 90% probability that the error in true anomaly will be between -66° and
+66°,

From Figures 22a and 22b it can be seen that true anomaly can be deter-
mined more accurately if the eccentricity is greater.
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